A vízminőség értékelése a nitrogén (15N) és az oxigén (18O) stabil izotópjainak nyomon követésével az antropogén nitrogénforrások feltárására / Assessment of water quality by tracking stable isotopes of Nitrogen (15N) and Oxygen (18O) in order to trace th

Primary tabs

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
21/09
Témavezető neve: 
Témavezető e-mail címe:
clement.adrienne@emk.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
The stable isotope components of nitrogen compounds (such as NO3) is a powerful resource that can provide more detailed insight into the nitrogen dynamics in a catchment scale. It can be used to trace the nitrogen sources and to retrieve the transformation processes due to the fact that various origins and processes tend to have distinct isotopic signatures. The δ15N (isotope ratio) of nitrogen compounds reflects their source, isotopic fractionation resulting from physical and chemical reactions, and biological reactions and functions such as uptake, nitrification, denitrification, and assimilation in food webs. Denitrification is a process involving strong fractionation, as a result of which both δ15N- and δ18O values increase in groundwater. Consequently, it is possible to distinguish whether a decrease in nitrate concentration is the result of, for example, denitrification or dilution. In the latter case, no fractionation occurs. The stable isotopes in tracing sources are generally applied for the assessment of groundwater contamination, however, they are also used for analysing surface water - groundwater interactions as well as accumulation of N forms via the food chains. 
 
The aim of the research is (i) studying the origin of nitrate in groundwater (organic or inorganic) (ii) analyse process of denitrification (iii) provide a basis for calibrating the groundwater nitrate contamination model.
 
The methodology of the research is based on sampling of groundwater wells. The locations of study are different agricultural areas of all Hungary, where 400 boreholes will be drilled in 2021-2022, arriving just the upper 1 m of groundwater. In the frame of the nitrate isotope measurements will be performed from water samples taken from groundwater exploration wells. Soil samples will also be taken from all boreholes, in different depths but isotope analyses will not be performed of them. 
 
Tasks of the candidate are as follows:
    • Participation in the monitoring campaign,
    • Measure stable isotope ratio of nitrogen compounds including δ15N and δ18O,
    • Assessment of background data (fertiliser use, soil physical data, hydrological conditions) and find relationship with isotope ratio and to track the source of pollution in catchment scale,
    • Look for a better understanding about nitrogen transformation and dynamic in the soil and groundwater by application of widely used groundwater models.
 
A téma meghatározó irodalma: 
    1. Clark I. (2015): Groundwater geochemistry and isotopes. CRC Press Taylor&Francis Group. 438 p. ISBN: 978-1-4665-9173-8 
    2. Craig H. (1961): Isotopic variations in meteoric waters. Science. 133: 1702-1703.
    3. Kendall, C. (1998). Tracing Nitrogen Sources and Cycling in Catchments. In: Isotope Tracers in Catchment Hydrology: pp. 519–576. Elsevier, 1998. https://doi.org/10.1016/b978-0-444-81546-0.50023-9
    4. Nikolenko O., Jurado A., Borges A.V., Knӧller K., Brouyѐre S. (2018): Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of The Total Environment. Volume 621, 15 April 2018, pp. 1415-1432. https://doi.org/10.1016/j.scitotenv.2017.10.086 0048-9697  
    5. Søvik, A. K., & Mørkved, P. T. (2008). Use of stable nitrogen isotope fractionation to estimate denitrification in small constructed wetlands treating agricultural runoff. Science of the Total Environment, 392(1), 157–165. https://doi.org/10.1016/j.scitotenv.2007.11.014
    6. Pretty, J.L., A.G. Hildrew, M. Trimmer. Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater fed chalk stream. Journal of Hydrology, 330 (2006), pp. 84-100 https://doi.org/10.1016/j.jhydrol.2006.04.013
    7. Deák, J., Stute, M., Rudolph, J., Sonntag, C. (1987): Determination of the flow regime of quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C, and noble gas measurements. International Symposium on the Use of Isotopes Techniques in Water Resources Development, IAEA, Vienna, Austria.
 
A téma hazai és nemzetközi folyóiratai: 
    1. Science of the Total Environment
    2. Jounal of Hydrology
    3. Open Geosciences
    4. Central European Geology
    5. Water Ssience and Technology
    6. Water (MDPI)
    7. Vízügyi Közlemények, Hidrológiai Közlöny (MHT)
 
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
    1. Kardos, MK, Clement, A (2020): Predicting small water courses’ physico-chemical status from watershed characteristics with two multivariate statistical methods. OPEN GEOSCIENCES 12 : 1 pp. 71-84.
    2. Hatvani, IG, de Barros, VD, Tanos, P, Kovács, J, Székely Kovács, I, Clement, A (2020): Spatiotemporal changes and drivers of trophic status over three decades in the largest shallow lake in Central Europe, Lake Balaton. ECOLOGICAL ENGINEERING 151 Paper: 105861
    3. Budai, P. A. Clement (2018): Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT 62: C pp. 179-185.
    4. Hatvani, I.G., A. Clement, J. Kovács, I.Sz. Kovács, J.Korponai (2014): Assessing water-quality data:The relationship between the water quality amelioration of Lake Balaton and the construction of its mitigation wetland. Journal of Great Lakes Research 40: 115 – 125.
    5. Kovács, Á., M. Honti, M. Zessner, A. Eder, A. Clement, G. Blöschl (2012): Identification of phosphorus emission hotspots in agricultural catchments. SCIENCE OF THE TOTAL ENVIRONMENT 433: pp. 74-88.
 
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
    1. Hatvani, I. G., Kovács, J., Márkus, L., Clement, A., Hoffmann, R., & Korponai, J. (2015). Assessing the relationship of background factors governing the water quality of an agricultural watershed with changes in catchment property (W-Hungary). JOURNAL OF HYDROLOGY, 521, 460–469.
    2. Kardos, M.K., Clement, A. (2020): Similarities among small watercourses based on multiparameter physico-chemical measurements. CENTRAL EUROPEAN GEOLOGY 63 : 1 pp. 27-37. , 11 p.
    3. Kardos, MK, Clement, A (2020): Predicting small water courses’ physico-chemical status from watershed characteristics with two multivariate statistical methods. OPEN GEOSCIENCES 12 : 1 pp. 71-84. , 14 p. 
    4. Kovács, Á., M. Honti, M. Zessner, A. Eder, A. Clement, G. Blöschl (2012): Identification of phosphorus emission hotspots in agricultural catchments. SCIENCE OF THE TOTAL ENVIRONMENT 433: pp. 74-88.
    5. Jolánkai, Zs., Kardos, M., Clement, A. (2020): Modification of the MONERIS Nutrient Emission Model for a Lowland Country (Hungary) to Support River Basin Management Planning in the Danube River Basin. WATER 12 : 3 Paper: 859
 

A témavezető eddigi doktoranduszai

Varga Laura (2016/2020/)
Kardos Máté Krisztián (2012/2015/2020)
Horváth Adrienn (2009/2012/), Fetter Éva (2009/2012/)
Horváth Adrienn (2008//), Fetter Éva (2008//)
Budai Péter (2006/2009/2011)
Státusz: 
beküldött