Szálerősítésű polimer-beton kompozit födémek vizsgálata / Analysis of FRP-concrete composite floor systems

Primary tabs

Nyilvántartási szám: 
22/05
Témavezető neve: 
Témavezető e-mail címe:
koris.kalman@emk.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
Fiber-reinforced polymer (FRP) has been extensively used in many fields of the industry. The high strength, light weight, non-corrosive properties, rapid construction, and low maintenance requirements make FRP an attractive solution also for civil engineering. However, to overcome the relatively low stiffness, local weakness, and initial high cost of beams made entirely of FRP, the possibility of using FRP–concrete composite beams or floors has been raised recently. This kind of composite structure maximizes the advantages of both FRP and concrete. FRP behaves as the main girder on the tensile side while concrete deck in compression, enhancing the global stiffness and resistance to concentrated load. After considering the expected improvements in transport, installation, and life-cycle differences, the initial cost of FRP can be offset, thereby leading the system competitive to conventional solutions. The aim of the research is the analytical and numerical examination of FRP–concrete composite floors for building construction by different configurations, regarding the specific material properties of the FRP, long term behavior of concrete and the connection interface between FRP and concrete.
The candidate must solve the following tasks:
    • Literature review: (i) material properties and analysis of FRP material; (ii) long term behavior of concrete; (iii) analysis of composite floor systems (also made of other materials like steel-concrete or wood-concrete composites) including connection interface; (iv) overview of available FRP-concrete composite floor solutions; (v) methods for numerical modeling of FRP material, composite floor systems and connection interfaces.
    • Evaluation a comparative analysis of existing FRP-concrete composite floor solutions. Recommendations for the possible enhancement of existing solutions or new possible solutions. Consideration of different FRP materials (GFRP, CFRP, etc.) and construction techniques with and without the need of formwork (e.g. FRP beam also acts as a formwork, or combination FRP beam and prefabricated concrete formwork panels).
    • Analysis of the selected floor system(s) using analytical approach based on literature review.
    • Numerical analysis of the selected floor system(s) taking into consideration the realistic material behavior of FRP, long term behavior of concrete, and the connection and force transfer between FRP and concrete. After validating the numerical model, parametric analysis may be performed to find the most effective and economical floor configurations.
    • Comparison and evaluation of the results.
A téma meghatározó irodalma: 
1. J. Wang, X. Zou, Y. Feng, Bilinear load-deflection model of fiber-reinforced polymer–concrete composite beam with interface slip, Advances in Mechanical Engineering, Vol. 7(7) 1–14, (2015).
2. D.F. Hernández, S. Matthys, T. Triantafillou, fib Bulletin 90. Externally applied FRP reinforcement for concrete structures, Technical Report, The International Federation for Structural Concrete, 229 p. (2019).
3. X. Gai, A. Darby, T. Ibell and M. Evernden, Experimental investigation of a novel FRP-concrete composite floor slab, Proceedings of the 5th International Conference - Advanced Composites in Construction, 12 p. (2011).
4. A. Muc, A. Stawiarski, M. Chwał, Design of the hybrid FRP/concrete structures for bridge constructions, Composite Structures, Vol. 247, ScienceDirect (2030).
5. X. Gai, A. Darby, T. Ibell, M. Evernden, FRP concrete composite floor slabs, Proceedings of the 5th International Conference - Advanced Composites in Construction, 12 p. (2011).
A téma hazai és nemzetközi folyóiratai: 
1. Advances in Mechanical Engineering /WoS, Scopus/
2. Composite Structures /WoS, Scopus/
3. Architecture Civil Engineering Environment /WoS/
4. Periodica Polytechnica – Civil Engineering /WoS, Scopus/
5. Pollack Periodica /Scopus/
6. Concrete Structures
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. K. Koris, I. Bódi, Gy. Dévényi, Prefabricated bridge girders – from design to implementation, Concrete Structures 13 (2012) 43-50.
2. K. Koris, A. Kozma, I. Bódi, Effect of the shear reinforcement type on the punching resistance of concrete slabs, Open Journal of Civil Engineering 8:(1) (2018) 1-11.
3. K. Koris, I. Bódi, Shear capacity of prestressed FRC beams with sparse stirrup spacing, Architecture Civil Engineering Environment 11:(1) (2018) 81-88.
4. K. Koris, M. Fawad, R.A. Khushnood, M. Usman, Retrofitting of damaged reinforced concrete bridge structure, Procedia Structural Integrity 18, 9 p. (2019)
5. K. Koris, I. Bódi, Lateral torsional buckling analysis of truss-braced timber arches, Revista De La Construccion Vol. 18, No. 2 (2019) 232-333.
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. K. Koris, I. Bódi, Service life estimation of pre-cast concrete structural members, Pollack Periodica 4:(1) (2009) 63-74.
2. K. Koris, I. Bódi, Long-term analysis of bending moment resistance on pre-cast concrete beams, Periodica Polytechnica – Civil Engineering 53:(2) (2009) 53-60.
3. K. Koris, I. Bódi, Gy. Dévényi, Prefabricated bridge girders – from design to implementation, Concrete Structures 13 (2012) 43-50.
4. K. Koris, I. Bódi, Experimental analysis of the shear capacity of precast concrete beam-and-block floor system, Concrete Structures 6 p. (2014)
5. K. Koris, I. Bódi, Shear capacity of prestressed FRC beams with sparse stirrup spacing, Architecture Civil Engineering Environment 11:(1) (2018) 81-88.

A témavezető eddigi doktoranduszai

Státusz: 
elfogadott