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ABSTRACT

The adjusment of cable - stayed bridges needs the shortening or lengthening of
severd or dl cables Changing the length of a single cable produces the change in forces
a other gays and a the diffening girder. The caculation of the forces due to the
adjustment of one stay seems to be advantageous by the force method. The paper gives
an andyticd way to the cdculation of a bridge with a given arangement. The chosen
primary sysem leads to a sysem of eguations having a pentadiagond coefficient
matrix. Because of the complexity of the task, even in the case of the regular form of the
bridge, the solution is given by arecurson.

1. INTRODUCTION

It is generdly known tha the accuracy of assembly of cable-stayed bridges
cannot be perfect. An adjusment of cables is needed in great mgority of cases [5).
During this procedure, in general, the stays are stressed or released according to the
deviation of the force acting in them to the desgned vaue. A cable-stayed bridge is a
daticaly indeterminate dructure to at least as high degree as the number of the dtays.
Obvioudy, the change of the length of a stay indicates forces in al other ones, as well
as in the diffening girder.

As it was previoudy shown [8], an explicit solution is not precluded even in the
case of regular arangement of the structure. The problem of adjustment could be treated
by the deformation method. In this case, the inverse of the coefficient matrix of the
system should be multiplied by a load vector having a single dement (a force) which is
not equa to zero. The gpplication of the force method for this task is more comfortable.
Namely, the influence coefficient [4] gives — even if not quite directly — the effect of
elongaion or shortening of a day. N.B.. From this point of view, a primary sysem
defined by cutting the says would be more convenient, but less advantageous
consdering the procedure and accuracy of the caculation The force method aso
enables us to reckon with the incidental yielding of a stay or occurring of a plastic hinge
in the diffening girder [3], [7]. Speeking about the forces acting in a cable-stayed
bridge, it should be mentioned that the dtuation is dmilar to the case of branchy
systems|[2], the signs are but opposite.
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The problem will be discussed for a dngle-bay bridge, the says start from the
top of the tower and are tied centraly to the stiffening girder a equidistant points.

2. THE STRUCTURAL ARRANGEMENT

The arrangement of the cable stayed dructure is shown in Fig. 1. The geometric
characterigtics and the giffness symbols are dso given. It is supposed that the tower is
absolutely rigid, the axid and the normd deformaions of the diffening girder are
neglected and its flexurd giffness is condant, the cross section of the stays is uniform,
aswell as the distance between their centric joining points to the girder.
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Fig. 1. The arragement of the structure Fig. 2. The primary system

3. THE PRIMARY SYSTEM AND THE SYSTEM OF EQUATIONS

Firg order theory will be conddered. The primary sysem of the force method
can be seen in Fig. 2. It is formed by applying hinges a both constrained ends and at the
joining points of cables aong the girder.

The unknowns are the moments of the diffening girder a these points. The
eements of the coefficient matrix of the system are rotations round the hinges due to the
unit moment-pairs applied there.

The system of equations can be written in the form

AXx=a,,

where A is the coefficient matrix, x is the vector of the unknown moments and ag is the
load vector. The shape of the matrix A is penta-diagond:
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The dements of the symmetric coefficient matrix are

of the primary system:
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4. THE INVERSE OF THE COEFFICIENT MATRIX

In order to perform the caculations, it is advisble to partition the coefficient
matrix into second order blocks. For this purpose, let us assume that n is an even
number, i.e.

n=2m.
Introducing
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This way, performing the addition the following expressons can be received for
the second order blocks of the coefficient metrix:
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Theinverse matrix of B; will aso be needed, let us writeit asfollows:
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The blocks of the inverse matrix will be expressed in the form [6]
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The matrix is symmetric, therefore
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The blocks P and Q can be calculated by the recursion [1]
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It isto be seen that only Qp, needs the inversion of a single second order matrix.

5. THE LOAD VECTOR AND THE SOLUTION

Speaking about adjustment, the load vector is a vector of loading deformations,
i.e. the dongation or shortening of a stay. The unit change of the length of the cable i
produces avertica displacement at the point i of the Stiffening girder

g=— 1 ——
e +( - 0207

The relative rotation a the hinge i of the primary system
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and those at pointsi-1 and i+1 respectivey

=.8
d!

Ji1=]

because dl points of the primary sysem will not move except point i. Of course, the
ggns can be opposite depending of lengthening or shortening of the cable-stay just
being adjusted. For the sake of amplicity, let us caculate with aload vector
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and the result will be multiplied by afactor w dependingon i, w; —3

To receive the unknowns, the inverse of the coeffic:ent matrix, with blocks Rjj,
see (1)(2), has to be multiplied by the vector ap shown in (3) and the factor w;. Then the
following expressions are obtained:
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This way, the unknown moments x; are presented and knowing these vaues the
force & in an arbitrary stay k due to the adjustment applied in stay j will be asfollows:
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6. EXAMPLE

A dmple example should show the agpplication of the method. The data of the
examined cable-stayed structure are shown in Fg. 3. Two different tower heights are
studied, i.e. h=20 m and h=40 m.

Let us congder that the stay 4 is shortened that way that the point moves
upwards by 10 mm.

It is only possble here to plot the forces in the stays due to the above shortening
for two h vauesin Fg. 4.
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Fig. 3. Data for the example Fig. 4. Results of calculation

The method enables to carry out many other parametric analyses, of course, even
for cases when there are much more cables than in this example.

7. CONCLUSION

The task was to cdculate the forces in the cable-stays while the adjustment of
the dructure is going on, i.e when an dongdion or shortening of a dngle day is
performed. The problem leads to a Saticdly indeterminate system, the degree being the
number of says (plus 2 if the ends of the diffening girder are condrained). So, the
discusson by the force method gives a liner sysem of eguaions with the above
mentioned unknowns. However, the method described in this paper, using a recursion,
enables to recelve the solution that way that only the inverse of a single second order
matrix isto be produced.
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