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ABSTRACT 
 

 The adjustment of cable - stayed bridges needs the shortening or lengthening of 
several or all cables. Changing the length of a single cable produces the change in forces 
at other stays and at the stiffening girder. The calculation of the forces due to the 
adjustment of one stay seems to be advantageous by the force method. The paper gives 
an analytical way to the calculation of a bridge with a given arrangement. The chosen 
primary system leads to a system of equations having a pentadiagonal coefficient 
matrix. Because of the complexity of the task, even in the case of the regular form of the 
bridge, the solution is given by a recursion.  
 
 

1. INTRODUCTION 
 

It is generally known that the accuracy of assembly of cable-stayed bridges 
cannot be perfect. An adjustment of cables is needed in great majority of cases [5]. 
During this procedure, in general, the stays are stressed or released according to the 
deviation of the force acting in them to the designed value. A cable-stayed bridge is a 
statically indeterminate structure to at least as high degree as the number of the stays. 
Obviously, the change of the length of a stay indicates forces in all other ones, as well 
as in the stiffening girder.  

As it was previously shown [8], an explicit solution is not precluded even in the 
case of regular arrangement of the structure. The problem of adjustment could be treated 
by the deformation method. In this case, the inverse of the coefficient matrix of the 
system should be multiplied by a load vector having a single element (a force) which is 
not equal to zero. The application of the force method for this task is more comfortable. 
Namely, the influence coefficient [4] gives – even if not quite directly – the effect of 
elongation or shortening of a stay. N.B.: From this point of view, a primary system 
defined by cutting the stays would be more convenient, but less advantageous 
considering the procedure and accuracy of the calculation. The force method also 
enables us to reckon with the incidental yielding of a stay or occurring of a plastic hinge 
in the stiffening girder [3], [7].  Speaking about the forces acting in a cable-stayed 
bridge, it should be mentioned that the situation is similar to the case of branchy 
systems [2], the signs are but opposite.   
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The problem will be discussed for a single-bay bridge, the stays start from the 
top of the tower and are tied centrally to the stiffening girder at equidistant points. 

 
 

2. THE STRUCTURAL ARRANGEMENT 
 

The arrangement of the cable stayed structure is shown in Fig. 1. The geometric 
characteristics and the stiffness symbols are also given. It is supposed that the tower is 
absolutely rigid, the axial and the normal deformations of the stiffening girder are 
neglected and its flexural stiffness is constant, the cross section of the stays is uniform, 
as well as the distance between their centric joining points to the girder.  

 

   
 Fig. 1. The arragement of the structure Fig. 2. The primary system 

 
 
3.  THE PRIMARY SYSTEM AND THE  SYSTEM OF EQUATIONS 

 
First order theory will be considered. The primary system of the force method 

can be seen in Fig. 2. It is formed by applying hinges at both constrained ends and at the 
joining points of cables along the girder.  

The unknowns are the moments of the stiffening girder at these points. The 
elements of the coefficient matrix of the system are rotations round the hinges due to the 
unit moment-pairs applied there. 

The system of equations can be written in the form 
  
 0axA = , 
 
where A is the coefficient matrix, x is the vector of the unknown moments and a0  is the 
load vector. The shape of the matrix A is penta-diagonal: 
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The elements of the symmetric coefficient matrix are  
of the primary system: 
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4.  THE INVERSE OF THE COEFFICIENT MATRIX 
 

In order to perform the calculations, it is advisable to partition the coefficient 
matrix into second order blocks. For this purpose, let us assume that n is an even 
number, i.e.  

 
n = 2m. 

 
Introducing 
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the coefficient matrix can be written in the form 
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furthermore introducing 3
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will be received, where 1,,2,1 −= mi K  
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This way, performing the addition the following expressions can be received for 

the second order blocks of the coefficient matrix: 
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with i = 2, 3, …, m-1 and 

 









−−+

−
=

++ 12122

2

22
0

iii

i
i LkLL

L
B . 

 
The inverse matrix of  Bi will also be needed, let us write it as follows: 
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The blocks of the inverse matrix will be expressed in the form [6] 
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The matrix is symmetric, therefore 
 

TT PQR jiij =  if ji ≥         (2) 
 

The blocks P and Q can be calculated by the recursion [1] 
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It is to be seen that only Qm needs the inversion of a single second order matrix. 
 
 

5.  THE LOAD VECTOR AND THE SOLUTION 
 

Speaking about adjustment, the load vector is a vector of loading deformations, 
i.e. the elongation or shortening of a stay. The unit change of the length of the cable i 
produces a vertical displacement at the point i of the stiffening girder 
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and those at points i-1 and i+1 respectively  
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because all points of the primary system will not move except point i. Of course, the 
signs can be opposite depending of lengthening or shortening of the cable-stay just 
being adjusted. For the sake of simplicity, let us calculate with a load vector 
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and the result will be multiplied by a factor w depending on i, 
d
e

w i
i = . 

To receive the unknowns, the inverse of the coefficient matrix, with blocks Rij, 
see (1)(2), has to be multiplied by the vector a0 shown in (3) and the factor wi. Then the 
following expressions are obtained: 
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is to be written. 

This way, the unknown moments xj are presented and knowing these values the 
force Sk in an arbitrary stay k due to the adjustment applied in stay j will be as follows: 
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6.  EXAMPLE 
 

A simple example should show the application of the method. The data of the 
examined cable-stayed structure are shown in Fig. 3. Two different tower heights are 
studied, i.e. h=20 m and h=40 m. 

Let us consider that the stay 4 is shortened that way that the point moves 
upwards by 10 mm. 

It is only possible here to plot the forces in the stays due to the above shortening 
for two h values in Fig. 4. 
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 Fig. 3. Data for the example Fig. 4. Results of calculation 

 
The method enables to carry out many other parametric analyses, of course, even 

for cases when there are much more cables than in this example. 
 
 

7.  CONCLUSION 
 

The task was to calculate the forces in the cable-stays while the adjustment of 
the structure is going on, i.e. when an elongation or shortening of a single stay is 
performed. The problem leads to a statically indeterminate system, the degree being the 
number of stays (plus 2 if the ends of the stiffening girder are constrained). So, the 
discussion by the force method gives a linear system of equations with the above 
mentioned unknowns. However, the method described in this paper, using a recursion, 
enables to receive the solution that way that only the inverse of a single second order 
matrix is to be produced. 
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